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OPTIMAL PROBLEM-SOLV'NG SEARCH:
ALL-OR-NONE SOLUTIONS
Herbert A. Simon
and

Joseph B. Kadane

Carnegie-Mellon University

ABSTRACT

Optimal algorithms are derived for salisficing problem-solving search, that is,
search where the goal is to reach anv solution, no distinction being made among
different solutions. This task is quite different from search for best solutions or

shortest path soiutions.
Constraints may be placed on the order in which sites msy be searched. This
paper treals salisficing searches through partially urdered search spaces where there

are mulliple alternative goals.

{1} Simon was supported in pail by Research Grant MH-07722 fram the Nalional
Instituie of Menta! Health and in purt by the Advanced Research Projects Agency of the
Office of the Secrelary of Defense (F44620-73-C-0074) which is monilored by the Air
Force Office of Scienlific Research; Kadane was supported in part by the Office of Naval
Rescarch under contract number NOCO;4-67-A-0314-002.
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OPTIMAL PROBLEM-SOLVING SEARCH:

ALL-OR-NONE SOLUTIONS

s e T e S 0 A RTINS m

Herbert A. Simon
and
Joseph B. Kadane

Carnegie-Melion University (1).

In the representation of problem solving as a search through a tree or directed
graph, several different cascs must be distinguished. In one case (Best-Value Search),
values are associated with terminal nodes, and the aim of the search is to tiscover the
node bearing the highest value. This case is only interesting if information becomes
available during the course of the search which, by excluding some portions of the
search space, makes exhaustive search urnecessary.

In the second case (Shortest-Path Search), which can be treated as 8 special case
of the first, the value associated with a terminal node is the length of the shortest path
from the starting point to thal terminal, and the aim is to find the terminal with the
smallest value (i.e., the terminsl closest to the starting point). In either the first or
second case, 2 further requirement may be imposed on the search sigorithm that it be
the algorithm for finding the best value or shortest path, as the case may be, that
minimizes the expected search effort for attaining il goal.

In a third case (Salisficing Search), there is a designaled subset of terminal nodes

called goals, and the aim of the search is {0 reach any of these goals. Ne distinction is "




)

Probiem-Saotving Search December 27, 1974

made between the values of different goals -- all goals are equally desirable. In one
variant of thus case, there is a single, unique gnal, and only one paih leading to it. In
either variant of this third case, we are interested in search algorithms that minimize
the expected search effort for reaching the first goal (or, if the goal is unique, for
reaching that goal). 1t is this third case which is the subject of the present paper.
Tasks of all of these three types are common in the literature of artificial
intelhgence. Game-playing programs are concerned with discovering “best™ moves,
henca involve best-value search. Programs for solving certain scheduling proolems --
for example, the Traveling Salesman problem -- scarch for shortest paths. Theorem-

proving programs, however, and most problem-solving programs are cencerned with

satisficing search,
| Search algorithms designed to handle tasks of the diiterent types may need to be
| vasily differenl, and the search effort required 1o nnd solyiions may respond o gquite
different parameters of the task environments. Suppose, tor example, that needles of
varying sharpness have been distributed randomly throughout 2 haystack of size §. A
best-vaiue search algorithm designed to tind the sharpest needle in the haystack will
1 have to search the entire stack, and will require an effort proportional to 5. A
satisficing algorithm to find a needle sharp enough for sewing wili only have to search
until it discovers one such needle. Its expecled search effort will be inversely
propcrtional to the average density of "sharp enough” reedles in the stack, and

independent of §.

1t the necdles are not distribuled with uniform density, ther the kind of

information about the distribution that would be useful o guide a best-value search

may be guile different from the information that would be usefu! to guide a satisfiting

;
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search. Intuitively, one can sce that for best-value search it would be helpful to be
able to set an upper bound on the sharpness of ihe neecles to be found in any
particular region. for satisficing search, one would want to know the probability of
finding a sharp-enough needle in any given region. From this simple example, therefore,
we see that we need separate theories of search algorithms for best-value and
satisficing search, respectively.

Several cases of satisticing search have already been treated in the literature.

These include both 'he casc where sites may be sesrched in any order, without
constraint, and the case where sites are partitioned into a number of classes, and there
is a specified order in which sites in each class must be searched (but no between-class
constraints). We call this case, “parallel search.”
In the Ntorgture of artificial intelligence (Chang and Slagle, 1971; Kowalski, 1969,
1972, Nilsson, 1971; Pohl, 1971), algorithms are tn be fournd for best-value and
shortest-path search through trees. A recent paper by Garey (1973) provides an
aigorithm for satisficing search through trees, but neither the algerithm nor its method
of derivation encompasses general partial orderings. It is the purpose of this paper to
fill this gap by extending our results 1o satisticing sesrches where the ordering
constraints are typical of those in problem-solving {asks: thet is, to searches in partial
arderings.

In the first fwo seclions, we will review the optimal search algorithms for
unconstrained and parallel (satisficing) searches, respectively. In the third section, we
will extended our results to salisficing searches through partially ordered search spaces

in the case where there are mullinle aiternative goals.

1. Satisticing Search Withcut Ordering Constraints
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An unknown number of chests of Spanish treasure have been buried on a random
basis at some of p sites, at a known dep h of three ieel. For each site there is a known
unconditional probability, pii), i=1,.,0, that a chest was buried there, and the cost of
excavaling site i is (.

A strategy, L, is a permutation of any subsel of the integers fiom | o p
Suppose a subset of sites is searched in the order given by {, under the condition that
the search is terminated as soon as one treasure is found. then we can gssociate with
the strategy t an expected cost ¥Y({) of this terminating search, and a probability P(1)
that a treasure will be found. P{{) = 1-5(1), where S(1} is the probability that there is
treasure at none of the sites of {. We assume that Y(}) > C and §(1) » O for ali §. That
is, no site can be excavated without cost and no site contains & treasure with certainty.

Let (gb) be the strategy consisting of executing straitegy a, followed by b, where
the subsets of 3 and R are non-overlapoing. Then by our definitions, we have:

(1.1)  V{i) = q(i),

where | is the strategy of excavating the jth site.
(1.2)  V(ab) = V(a) + S(a)V(b)
(1.3}  S(ab} = S(a)S(b).

Equation (1.2) slates that the expected cost oF & te-minating search over (gb) is
the expected cost, ¥(a), of a terminaiing search over a plus the product of the expected
cost of a terminating search over b by the probability, §(a), that the latter search is
necessary (i.e., that treasure was not found in 3). Equetion (1.3) states that the

probability of net finding a treasure in (ab) is the product of the probabilities of not

finding ireasures in 3 and p, resoectively.

The functional equations {1.2) and (1.3} are studied 1 Kadane (1969).
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It 1s evident that § is associative ad commutative, so that S((ab)c) ~ S(albe)) and
S(ab) = S(ba) while Y is associative, but nol commutative. Defining A; = (3).82.-.8), and
S(Ag) = S(ag) = 1, we tind readily that:

(1.4) V(A,) = V(a}.25,..2,)

r -1
= I n S(aj)V(ai)
1=} j=0

= ;: S(A;_)WV(a))
il

We also note for later reference that:

(1.5)  P(ab) = P(a) + P(b) - P(z)P(b) = P(a) + S(a)P(b).

We consider now the effect upon the expected cost of search of excavating the
same sel of sites bul in different orders -- by strategies (aghed) and (achid), say, where
2 and ¢ may be empty, S(x), with x 'mply, equals 1, and ¥(x), with x empty, equals zero.
(1.6)  V(abcd) - V{acbd)

= V(a) + S(a)V(bcd) - V(a) - S(a)¥(cbd)
(1.7) = S(a)V(b ) - V(cbd)]
(1.8) = S(a){Vibe) + S{bcV(d) - V(cb) - S{cbIV(d)]

But, since S{b¢) = Si¢h), Eauation (1.8) simplifies to:
(1.9)  V(abced) - V(acbd) = Sta)V{be) - Vicb))

(1.10) = S(a)[V(B)P(c) - V(cIP(b}]

In particular, if b and ¢ consist of the single siles | and j, respectively, then it will
be cheaper to excavate | before j iff d() > P(j), where @(1) = B(1)/¥(D). Moreover, this
result holds for all | and ). The optimal strategy, therefore, for finding a single treasure
is to excavate sites in descending order of (i) until a treasure is discovered.

Simitar results were obtained by Dean (1965), Kadane (1969), Joyce {1971}, and

Mitien (1960).
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2. Search With Paralicl Ordering

Suppose, now, that the Spanish ireasures are buried, ss before, but that neither
the sites nor the depths of burisl are known with certainty. At each site a sequence of
one-foot shices can be excssated, and a tressure may be disciesed by the removat of
any one of these slices. The probability that a treasure liss just below any specified
slice is known. Designate the protability that the treasure lies below slice { of site | a3
wini).

A particular slice (g} can only be searched after all the other slices sbove i, (if),
{ < g, have been searched. Hence, an admissibie scarch slvalegy will be an ordering of
2 subset of slices such that (1g) does not precede (i.f) it g > {. For a given strategy, let
tiLf) be the order number of the slice (L{).

Now, we c¢an define quantities, Y(1), P(D), and S(1) exactly as before, so that
g2in valid dor the admiccible ciratagisc. We wish 1o
tind the strategy that mnimizes Y({) where t ranges over parmutations of the entire set
of n integers subject to the order constraint that $(,0) > g if ¢ > {.

A bioc of shices ic a set of shices telonging !0 the ssme site that are consecutive
in that site. {The members of a b'oc rneed noif te consecutive in any psrlicular sirategy,
since they may be intarspersed with one or more slices from other sites.)

In a strategy (sbc), b is (weakly) monotoric decressing if for each pair of
segmerds, with order rumbers {, j in b, f{(D <P ¥ {<j The subsirategy L is
monotonic increasing if, for each |, j in the sequence B(j) 2 §{) if { < |

in 2 strategy (abcd), b and ¢ are interchangeable if permuting the strategy into

(achd) does not violate the order constraints (i.e, does produce another strategy).

Theorem 2 1: In (abed), L and ¢ are interchangeable itf no
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sife represented by one or mare shces in b 1s representad by any sices in
<

Proot: The order consirants apply o pars of shces belonging to
the same site. Under the conditions of the theorem, interchange of b with ¢
will not reverse the order of any par of slices belenging 1o the same site,
hence will not violate any order constraints.

Conversely, if shie {(i,1) in b ant shice {(Lg) 1n ¢ belong lo the same
site, then the order constraimts require that { < g (since L) < t(ig)). But,
in (D) we will have (i) > 1Lg), which viclates the constramts.

QED
Theorem 2.2: I b and ¢ are interchangzable in (ahed), ond if
@(c) > @), then the stralegy can be impreved by inlerchanging b end ¢,

herce 1v not opiimai.

Proof: Using Equation (1.10), we bave:
(2.1)  Viabed) - Vlachd! = S{a)V(BIP(c) - V(OPb)]
(2.2} S{a;vib e )@c) - b)) > 0.

QLD

Theorem 2.3: If h and ¢ are stralegies inat are also consecutive
blocs of ate |, with d tollowing b, and ¢ §{d) > Pih), then a sirategy of
{abcde) with ¢ non-null 15 not optimal.

Proot: By the ordering constraints, ¢ cannnt precede & Suppose o
does not foilow immediately (¢ 1s non-nutt)  Since (Qd) s a bloc, N0 member
of ¢ belongs to site |, for ali other shices of | must, by the ordering

constrants, precede b or follow ¢ Edther @(¢) > Plh), or M) < B < M),
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In the first case, lhe sirategy can be mmprovesd (Theorem 2.2) by

interchanging ¢ with b, nence 15 not optimal In the second case, the

strategy an be improved Ly interchanging ¢ with ¢, hence 1< not optimal.

QED

We call the bloc (bd) ef Theorem 2.3 an \ndiyizible blos. Each indivisibie bioc is
made up ot conseculiva siices from a single site, and 1ts ndivisibility depends only on
the @'s of strategizs from that site. Hence we can now procead, for each individual site,
to determine 1< maumai r.divisible blocs by joining blocs that salisfy the conditions of
Theorem 23 until the @s for all the sepsrate blocs tha' remsin aere monotonic

detreasing. We van viale iiny resuit as @ corollary;

Coroliary 2.3.1: An optimal solutitn consists of a sequence of

maximai ingvicible blocs such thal the @'s of the successive bin

ce of any

given site are monolonic decreasing

We are now ready for the main theorem.

Theorem 2 4: If a stralegy consists of a sequence of mpximal
indivisible blocs, and f the §'s associated with these blots are monoctonit

decreauing, then the strategy < optimai

Proof: 1 Ccrollary 2.3.1 puarantees that any optimal strategy must

consist of a sequence of maximal indivisible blocs, ard that the §'s of the
subsequerce of blocs belonging 10 any given si'e are monotonic decreasing.

2 ihe strategy defined 1n Theorem 24 1 ui.que up to trivial
interchanges of cegments with equal @, which do not changze the value of Y.

3 The oniy allowable permutations that preserve the maximal
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ndivistble  blocs and the.i order involve interchanges of strategies
telonging 'o different sites and not separated by a sirategy belonging to
either of their sites.

4 Suppose a strategy s optimai, but that @ is no! monotonic
decreasing. Consider the First instance where @(h) > Pla), with a
immediately preceding b Since the blocs belongmg to a given site are
monotemic decreasing in value, @ and b must belang to different sites, hence
are interchangeabie, by Theorem 21 Therefore, by Theorem 2.2, the
strategy would be improved by intercharging a and b, contrary to the

hypothesic that the sirategy s optimal

Theorem 24 tellc hat th

us th ke oplimal stralegy 10 digging for doubioons s 1o
calculate the average yield (per fool of digging) for each maximal indivisible bloc of &
site, then excavale the successive blocs in decreasing order of yield.

The evaluation tunctions P, take into account not orly the potential return, p(i),
ard cost, qus, trom the slice being execuled, but the prospective value of getting closer
to underlying shces that have larger @ values than the current slice. This characteristic
of the evaiuation function adds a certain "depth-first” tendency to the strategy. For
example, suppose that it 1< known that the treasure 1s buried no! less than five feet
below the pround. Then, if the optimal strategy calls for excavation to begin at the ith
site, it wil continye at that site uniil the excavation has reached a depth of at least five
feel.

In the special case in which g»f implies @(,g) < @(f), Kadane (1969) tings tne
oplimal ordering to be according to 9. The results of this section are new when the

above andition i« not sati-fied.
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3. Search Through a3 Partially-Ordered Space

Our next task ic tc extend the resulls ot the previous section to a search through
a partiaily-ordered set of nodes, or cycle-free graph, which includes the famil:ar case of
search througn a tree. Theorem-proving and problem-solving searches are commonly
representable as searches through trees or, more generally through partial crderings.
In such a search, a new node is obtained by applying an operator te branch from some
node reacked previously. In this section, we will prove a thegrem {Theorem 3.1) for
optimal search through a partial ordering whick is anaiogous to Theorems 2.3 and 2.4
for parallel orderings, As before, the key role is played by an evaluation function, 9",
which can be assigned to each branch at each node already reached in such a way thal
it is always opiimal 10 search next the branch with largest §"

The proof of optimality for a partial ardering is a great deal more complex than
the proof for a paraiiel ordering, mainiy because @ ior a node now has {0 be maximized
over all the alternative sequerces descendant from that node. The notion of the "best
set" of a node (the set of nodes descendant trom that node for which § is maximum)
replaces the "maximum indivisible bloc™ of the previous section. The D" ¢f Theorem 3.1
is this best set.

As before, we assume that for each node, |, of the set a value pfi) is given,

representing the probability that a solution will be fourd at that node. The cost of

excavating each node from one immediately before A0
A strategy t(D for a set of nodes, D, . rdering of the nodes of D that
satisties the order constraints or those nodes. . 4 and B be two mutually exclusive

sets of nodes, and C their sel sum. The A and B are interchangeable iff there exists a

strategy ¢ = (ab) and a strategy ¢" = (k"2"), where ¢ and (" are sirategies on C, a and

Ty
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a" strategies on A, and b and Q" sirategies on B Clearly, if A and B are
interchangeable, if a is any strategy of A and if h is any strategy of [3, then (ab) and
(pa) are strategies of C.

Corresponding to the notion of a bloc in the previous section, we introduce the
concepts of jnitial and terminai blogs of a set of nodes. Let A be a parfially ordered set
of nodes, and let it contain B and C = A-B. Then B is an initial bloc of A iff there exist
strategies b on B and ¢ on C such that a = (bc) is a strategy on A. B is a terminal bloc
of A iff there exist strategies b on B and ¢ on C such that a = (¢h) is a sfrategy on A

As before, we can define for each strategy the quantities Y({]), P(), S(1) and
9(1) = PV, all of which depend only on the subset, D, and ils ordering, 1,
independently of the remaining rodes in the entire set. Note that P’} and 3(i) are
constant over all strategies of a given set, ), hence are functions of {I; while Y{(t) and
@(1) depend upon the stratepy, t, as well as the set, .

A strategy of a set of nodes, D, for which P assumes its greatest value for that
set will be called a best stralegy of D and will be designated by (D) and its ¥ by V(D).
An initial bloc, D, of set T for which P(D) 15 maximal over all initial blocs of T wiill be
calied 2 best set of T, and the P of its best stralegy will be designated by §"(]).

We now prove four lemmas that are needed for our main theorem.

Lemma 3.1. lLet A-and AUB be initial sets of T such that: (1)

A is the best set of 1, with best strategy 1'(A) = g and (2) L is any

strategy for B.
Then, ¢" 2 p(b).
Proof. Since A is the best set of T, 0" = P{a) 2 Piak).

Now, using Equation 1.9,
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(3.1)  V(ab)p(ab) = P(ab) = P(a) + S(a}P(b)
(3.2) =V(a}p(a) + S(a)V(b}p(b)
But V(ab){(a) 2 V(ab)p(sb), so that,
(3.3 V(ab)P(a) 2 V(a)B(z) + S(a)V(b¥(b)
Expanding the left-hand »ide, we get:
(3.9) [V(a) + S(a)V(b)(a) 2 V(a}p{a) + S(a)Vib}}(i)
(35) S(a)V(b)P(a) 2 S(a)V(b}(b).
so that, since we have postulated that S(a) # O and V(b) # Q,
(3.6) 9(e) = §" 2 P(b)

QED

Letmraa 3.2. Let A be a set consisting of the mutually exclusive
subsets of nodes B, C, and D, where B is an initial bloc of A, while C and
are interchangeable, hence also both terminal blocs. Let the best strategy,
’(4) be:
£(A) = (e d)-cudi)

where b is a strategy for B, ¢ = (g)..¢) is a strategy for G ond

d = (dj..d,) ic a strategy for D.
Then 9(c)) 2 Pld)) 2 ... 2 Plgy) 2 P(dy,)

Proof: Suppose §(d) < @(g;,1) Then, by Equation (1.10), t'.(A) could
be improved by exchanging d; and ¢;,, contrary 1o the hypothesis thal
P(A) is maximal. Bul the exchange is admissible, since (; and Q ere

interchangeable. Similarly, the supposition that @{c) < ®{d;) leads to s

contradiction.

QED
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temma 3.3. Given A, 8, C and R as in Lemma 3.2, with

¢ = (C)-yr and d = (d]..dy) suppose that A is & best set of I. sc that
@A) = §". Then: $(d) 2 P(A), and therefore PUD) 2 PYA) = @

Proot: Define,

c= (bﬁldlﬁk)

)oro -;.f.v«-wmmmw-—rmm

Then,

. Ple)+S(e)Pld,}

; e Vie)+S{e)¥(d,)

' It §(dy) = Bid,)/¥(d,) < P", then Ple) > §°. But g is a strategy for
I} , an initial bloc of A, and also of I Since §” is maximal over all such blocs,

the inequality is a contradiction. Therefore B(d,) 2 9"

Bui, by Lemma 3.2,

, Dy L0 5 3Py ey

D) - Bld; +Sidy Pedo)+..+5(d) ) Sdy - 1 Ady)
b Vidy)eS(d Wido)+..+8(d) ). 8ldy -1 ¥(gy)

But, by getimtion, B(R) 2 @(d), whence,
) (0 2 ¢~
QED
: Lemma 3.4. Let (acd) and (ac"d) be sirategies over the same set
I of nodes. Then,
E (3.7)  ¥(acd) - Viac"d) = S(a)[V(c) - V{c"}]
Proof:

(3.8) V(acd) - V(ac"d) = V(a) + S(a)Vicd) - Wa) - S(a)V(c™d)

(3.9) « S(a)V(c)*+S(OV(d)-Vic™)-SlcV(d)) :
: (3.10) = S(a)V(c) - Vic™)
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QED

In order tc state and prove the main theorem, we need ta introduce some
additional notation. Let (31...3,) and (hl...hr) be straiegies. Define A’i as the best
a permutation of (z;..a,), B, = (&b G = (0ja;-bja) & =~ (A% 4 A" s the best
permutation of (3;,)..3,), 8% = (L, by ) C5 = (b, 141 -Red ) B = (RiqA_"i_‘ '

Define Cq =C* =Ag = &% =By = B*, =L, ihe null strategy, with SG) =1,
Y(}) = 0.

Consider a strategy over the set 1. having the form ({g), where { and g are
strategies over the non-overiapping sets £ and G, respectively. Let " be the maximum
of P over all strategies of G, and let Q" be an initiai bioc of G, end L(D") » strategy for

D" such that @({’(Q") = P~. Finally, let b be the inilial segment of g, consisting of {(R")

possibly interspersed with other nodes of (3 not belonging to D7, and having the last

element of {(D") as its last elemen!l. We row prove the theorem:

TS T e

Theorem 3.i: If i contains any nodes not belonging 10 [)°, then

(fg) can be wunproved (weakly) by moving these "intruding™ ricdes beyond
the last node of D that is, by bringing the nodes of Q* to the front of h
with the remaining nodes of h following them,

Stating the thcorem in the nctafion previcusly introduced, we
designate {(D") Ly A, = (2jap--a,), and b by C, '(hlal"'hr'r)' so thot
B, = (R].-b,) is a strategy on the intruding nodes. Finally, we define m such
that g = C,m. By definition of D7, A = 8%, The permutation of h,
asserted by the Theorem to be an improvemen!, is then
h" = (A, B,) = A%:B*,

If Yitg) is infinile, there is nothing to prove. On the other hand, if

Y{fg) is finite, then
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(3.11) Vlfg) = V() + SIHV(C,) + SIHS(C IV(m) < oo

2 of

so that Y({), Y(C,) and Y(m) are all finite. Now,

(3.12) V(IATGB%gm) = V(1) ¢ S(NV(A%GB%G) + S(1S(A*aB*G)V(m)

IR TN IV PaiC PN

Now § is commutative, s0 5<(A‘OB*0) = 3G, ). Then,
{3.13) wvtig) - V('A‘OB'om) = SUNV(C,) - V(A'OB’O)].

Therefore, we wish to prove that:

e

(3.14; W(C,) - V(A‘OB'O) 20
[ : Note thal a's may be advanced forward, interchanging them

with k’s, since D" is an initial bloc of M

Proof: By identity, and remembering that

Al =B =k A% = A%,

r
(3.15) ViC,) - ViA*oB'g) = T [VICA™B%)-VIC;_ A%, 8% )]
i}

Considering the individual terms of the summaticn, we have:
(316) V(QA".B‘,)-V(C,_IA",_iﬂﬂ_l)
= V(C;_ ;A% B%)-V(C; A, _;b;8%)
(3.17) = V(C;_b,A%_|B®)-V(C;_;b,A*%;_|B*)
(C,_1b, A% | B*)-V(C; A%, 15,B%)
* . But, by Lemma 3.8, Y(C,_|b;A%_|B*)-¥(C,_1bA"_18%) 2 0.
] Therefore, '

E (3.18) VICA™B%) - VCA™,_|B%_))

2 V(Ci-lbi ﬂ"i_lB‘i) - V(Ci-lA"ivlbiB‘i)'
Applying Equation (1.10), with C,_; = a, 3
b‘.'b'A"i‘z "C.:a‘j"d‘ '

we gel,

5
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(319) VICGA™MB*) - VICA™,_ 8% )
2 S(C; | IP(A™, | b)) - PIbV(A™,_ ), whence
r
(320) W(C,) - V(A*B%o) 2 i)_:l ST VIOIVIA™, | XA, | )-(b,))
=7 -7,
where,

r
(32D Ty = I S(C_IV(b)V(A™, | (A, _))
el

T3
r
(3.22) T = T S(C;_; Wb V(A (b))
i=]
Consider 1 &', 1 is the best sirategy of a terminal bloc of o~
Hence, by Lemma 3.3, (4™, ;) z 9" s0 that
r
(323) Ty 2 T S(C_)IVio,V(a*,_ 9"
i=]
Next, consider T,. Factoring UG- = B, )84 ),
in (3.22), we obtain,
r
(3.24) Ty =T S(B, )b B(b;)S(A;_ | VIA™,_))
=1
Since ¥(A%,) = 0, we have the identity:
. r
{3.25) S(Ai_l)V(A"i,l) =F Z"; where
j=1
T . “. - . "
(3.26) { SUA; V(A j-1) - SAV(A i
Using Equation (3.25) in (3.24), and then changing
the order of summation, we fird,

r r
@27 T,= I S(Bj. | Vb by
isl =i

16
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(3.28) - Zj L S(B;_;)P(b))
f =1 =l
i
H r r
%, : (3.29) -.l: Z,—P(Bj)-.l: ZjV(Bj)Q(Bj)
: 1=1 j=1
L

But Bj salisfies the conditions of g§ of Lemms 3.1,
; with &', es A

Therefore, by that lemma, ¢(B‘~) s @". Hence,

r
: (3.30) Tps[ T ZB)R"
; : i=1
r j
(3.31) [T Z; TS6 VbR
j=1 "=l
r r )
b {332 < TSB_j) T Lvinw®
§ !
i=] =l
| :
(3.33) s T S(B;_)IVO)SA,_IVIAY,_ @ (by (3.25))
i1
# ..
(3.39) s T SIC;_| Vb, V(A*,_| §*
i=1

Combining (3.23) and (3.31), we have, finally:

(3.35) V(C,) - VIA%BY) 2 T) - T,

2T [S(C;_|VIBIVIA™,_)XP" - §7) = 2.
1=]

Comparing (3.35) with Equaticn (3.14), we see that this is

the result we want, and the theorem is proved.

QED
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4. Conclusion

In conclusion we wi;h to comment on how our results car be used in constructing
search algorithms. We will consider the case of ¢z search through a partial ordering
since search through a paralle! ordering and independent search can be regarded simply
as special cases.

In some applications, we will have, in advance, a map of the enure search graph,
together with an estimate of p(|) for each of its nodes. In this case, P” can be estimated
for each node after deiermining the maximal indivisible blocs. In other applications, the
search tree will only evolve in the course of the search itself. Then 9" cannot be
determined from the p())'s, but will have lo, somehow, be estimated directly.

In the case where & map of the search graph is given in advance, determination
of the 9" may be considerably facihitated by using an algorithm described by Garey
{1973). This algorithm provides a method, applicable to the "tree-like” nortions ot a
partial ordering, for reducing the entire set of nodes to a smaller set, essentially by
discovering the maximal indivisible blocs and the optimal strategies for them. Atter
Garey’s algorithm has been applied to carry the reduction as far as possible, the
maxiraal indivisible blocs for the reduced system can be discovered, and the values of §°
associated with them computed. Once these values have been found, or estimated
directly if the search graph is not given in advance, the algorithm described in the next
paragraphs can be used to order the nodes opiimally.

Suppose that, in a partial ordering, we assign to each branch, B, at each node, [,
an ordinal number, E(B). Then, we can construct a search aigorithm of the familiar
search-scan variety, as follows:

Let (BN) designale branch B at rode [, and let L be the list of all {8,N) pairs
available for search, ordered according to E(B.N).

18
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1. Choose the first {8,N) pair on |
and generate the new node, N™;

2. If N" is a goal node stop, else;

3. Compute E(N".B) for all branches from N,
and insert the new (",B) pairs in their
appropriate positions in L;

4. Return to Step 1.

Theorem 3.1 shows that if E(N"8) is set equal to the @~ definsd in the text, then
the search determined by the above elgorithm is optimal.

The .aive, P (,B), depends on the probabiiities of reaching the gosl, pfi), ot some
of the nodes tha! are descendants of i In practice, these values of pli) will usually not
Se Rnowi, aud fon ine aigoriihm wili have to be » heuristic estimats of B~
estimate of the “promise” of searching from | in the direction defined by B Theorem
3.1 indicates what the nature of this estimste should be.

In ostimating 8”, we must postulate that the search will be continved through a
“best set” of nodes, the set of reachable nodes thal maximizes the rstic of expected
return to cost of search. Scarch should continue in one direction at least as long s this
ratio contirues to increase, and in fact, until it becomes lower than the besi ratio for
some other branch. By this procedure, depth of search is balanced egainst the

expectation of success, so that a modest probability of success after a short search may

imply tiwa same @ as & nigher probability of success after a longer search.
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